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Optimization

• form mathematical model of real (design, analysis, synthesis,
estimation, control, . . . ) problem

• use computational algorithm to solve

• standard formulation:

minimize f(x)
subject to x ∈ C

x is the (decision) variable; f is the objective; C is the constraint set

• other formulations: multi-criterion/multi-level optimization, MDO, SAT
problems, trade-off analysis, minimax, . . .
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The good news

• everything1 is an optimization problem

1
i.e., much of engineering design and analysis, data analysis
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The bad news

• you can’t (really) solve most optimization problems

• even simple looking problems are often intractable
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Except for some special cases

• least-squares and variations (e.g., optimal control, filtering)

• linear and quadratic programming

• convex optimization

well, OK, there are some other special cases
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Convex optimization problem

minimize f(x)
subject to x ∈ C

• C is convex (closed under averaging):

x, y ∈ C, θ ∈ [0, 1] =⇒ θx + (1 − θ)y ∈ C

• f is convex (graph of f curves upward):

θ ∈ [0, 1] =⇒ f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

• not always easy to recognize/validate convexity
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Convex optimization

• (no analytical solutions, but) can solve convex optimization problems
extremely well (in theory and practice)

– get global solutions, with optimality certificate
– problems with 103–105 variables, constraints solved by generic

methods on generic processor
– (much) larger problems solved by iterative methods and/or on

multiple processors
– differentiability plays a minor role

• beautiful (and fairly complete) theory
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Applications of convex optimization

• convex problems come up much more often than was once thought

• many applications recently discovered in

– control
– combinatorial optimization
– signal processing
– image processing
– communications, networking
– analog and digital circuit design
– statistics, machine learning
– finance
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Some recent (general) developments

• robust optimization methods that handle parameter variation,
optimizing average or worst-case performance, quantiles, . . .

• ℓ1-based heuristics for finding sparse solutions
(compressed sensing, feature selection, . . . )

• parser/solvers make rapid prototyping easy

• code generators yield solvers that can be embedded in real-time
systems
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Multi-period processor speed scheduling

• processor adjusts its speed st ∈ [smin, smax] in each of T time periods

• energy consumed in period t is φ(st); total energy is E =
∑T

t=1 φ(st)

• n jobs

– job i available at t = Ai; must finish by deadline t = Di

– job i requires total work Wi ≥ 0

• Sti ≥ 0 is effective processor speed allocated to job i in period t

st =
n

∑

i=1

Sti,

Di
∑

t=Ai

Sti ≥ Wi
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Minimum energy processor speed scheduling

• choose speeds st and allocations Sti to minimize total energy E

minimize E =
∑T

t=1 φ(st)
subject to smin ≤ st ≤ smax, t = 1, . . . , T

st =
∑n

i=1 Sti, t = 1, . . . , T
∑Di

t=Ai
Sti ≥ Wi, i = 1, . . . , n

• a convex problem when φ is convex

• more sophisticated versions include

– multiple processors
– other constraints (thermal, speed slew rate, . . . )
– stochastic models for (future) data
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Example

• T = 16 periods, n = 12 jobs

• smin = 1, smax = 6, φ(st) = s2
t

• jobs shown as bars over [Ai,Di] with area ∝ Wi
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Optimal and uniform schedules

• uniform schedule: Sti = Wi/(Di − Ai); gives Eunif = 374.1

• optimal schedule S⋆
ti gives E⋆ = 167.1
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Minimum time control with active vibration supression

F

T

• force F (t) moves object modeled as 3 masses (2 vibration modes)

• tension T (t) used for active vibration supression

• goal: move object to commanded position as quickly as possible, with

|F (t)| ≤ 1, |T (t)| ≤ 0.1
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Ignoring vibration modes

• treat object as single mass; apply only F

• analytical (‘bang-bang’) solution
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With vibration modes

• no analytical solution, but reduces to a quasiconvex problem

• can be solved by solving a small number of convex problems
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Network utility maximization

• network with m links and n flows

• flow j has (nonnegative) flow rate fj

• each flow passes over a fixed set of links (its route)

• total link traffic (sum of flows through it) cannot exceed capacity ci

• choose flow rates to maximize utility U(f) =
∑n

i=1 Uj(fj)

• Uj increasing and concave, e.g.,

– Uj(fj) = log fj (log utility)
– Uj(fj) = wj min{fj, sj} (linear with satiation)
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Network utility maximization

• can express link capacity constraints as Rf ≤ c, with

Rij =

{

1 flow j passes through link i
0 otherwise

• NUM problem is

maximize U(f)
subject to Rf ≤ c, f ≥ 0

a convex optimization problem

• ‘solved’ (approximately) by distributed protocols
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Example

• Uj(fj) = min{fj, sj}; c = (2, 4, 4, 2), s = (2, 1, 2, 3)

• greedy flows: optimize over f1, then f2, . . .

optimal, U⋆ = 5 greedy, U = 4
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Grasp force optimization

• choose K grasping forces on object

– resist external wrench
– respect friction cone constraints
– minimize maximum grasp force

• convex problem (second-order cone program):

minimize maxi ‖f
(i)‖2 max contact force

subject to
∑

i Q
(i)f (i) = f ext force equillibrium

∑

i p
(i) × (Q(i)f (i)) = τ ext torque equillibrium

µif
(i)
3 ≥

(

f
(i)2
1 + f

(i)2
2

)1/2

friction cone contraints

variables f (i) ∈ R3, i = 1, . . . , K (contact forces)
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Example
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Parser/solvers for convex optimization

• specify convex problem in natural form

– declare optimization variables
– form convex objective and constraints using a specific set of atoms

and calculus rules

• problem is convex-by-construction

• easy to parse, automatically transform to standard form, solve, and
transform back

• implemented using object-oriented methods and/or compiler-compilers

• huge gain in productivity (rapid prototyping, teaching, research ideas)
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Example (cvx)

convex problem, with variable x ∈ Rn:

minimize ‖Ax − b‖2 + λ‖x‖1

subject to Fx ≤ g

cvx specification:

cvx begin

variable x(n) % declare vector variable

minimize (norm(A*x-b,2) + lambda*norm(x,1))

subject to F*x <= g

cvx end
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when cvx processes this specification, it

• verifies convexity of problem

• generates equivalent IPM-compatible problem

• solves it using SDPT3 or SeDuMi

• transforms solution back to original problem

the cvx code is easy to read, understand, modify
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The same example, transformed by ‘hand’

transform problem to SOCP, call SeDuMi, reconstruct solution:

% Set up big matrices.

[m,n] = size(A); [p,n] = size(F);

AA = [speye(n), -speye(n), speye(n), sparse(n,p+m+1); ...

F, sparse(p,2*n), speye(p), sparse(p,m+1); ...

A, sparse(m,2*n+p), speye(m), sparse(m,1)];

bb = [zeros(n,1); g; b];

cc = [zeros(n,1); gamma*ones(2*n,1); zeros(m+p,1); 1];

K.f = m; K.l = 2*n+p; K.q = m + 1; % specify cone

xx = sedumi(AA, bb, cc, K); % solve SOCP

x = x(1:n); % extract solution
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Real-time embedded optimization

• embed solvers in real-time applications (signal processing, control, . . . )
i.e., solve an optimization problem at each time step

• requires solvers that are fast, with known maximum execution time

• used now for applications with hour/minute time-scales
(process control, supply chain and revenue ‘management’, trading . . . )

• new methods allows millisecond/microsecond time-scales
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Solving specific problems

in developing a custom solver for a specific application, we can

• exploit structure very efficiently

• determine ordering, memory allocation beforehand

• cut corners in algorithm, e.g., terminate early

• use warm start

to get very fast solver
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Code generation

• describe optimization problem (family) in high level form

• automatically generate solver source code

• can do much at code generation time

• yields super fast solvers suitable for real-time embedded applications

Stanford Computer Forum, 4/15/09 31



Example: cvxmod specification

quadratic program, with variable x ∈ Rn:

minimize xTPx + qTx
subject to Gx ≤ h, Ax = b

cvxmod specification:
A = matrix(...); b = matrix(...)

P = param(‘P’, n, n, psd=True); q = param(‘q’, n)

G = param(‘G’, m, n); h = param(‘h’, m)

x = optvar(‘x’, n)

qpfam = problem(minimize(quadform(x, P) + tp(q)*x),

[G*x <= h, A*x == b])
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Example: cvxmod code generation

• generate solver for problem family qpfam with

qpfam.codegen()

• output includes qpfam/solver.c and ancillary files

• solve instance with

status = solve(params, vars, work);
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Sample solve times

problem family vars constrs SDPT3 (ms) cvxmod (ms)

control1 140 190 250 0.4

control2 360 1080 1400 2.0

control3 1110 3180 3400 13.2

order_exec 20 41 490 0.05

net_utility 50 150 130 0.23

actuator 50 106 300 0.17

grasp 30 66 300 0.05
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Conclusions

• convex optimization problems come up in many application areas

• new tools make rapid prototyping easy

• new code generation methods yield solvers that can be embedded in
real-time applications
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