Recent Advances in Convex Optimization

Stephen Boyd

joint work with Michael Grant, Jacob Mattingley, Yang Wang Electrical Engineering Department, Stanford University

Stanford Computer Forum, 4/15/09

Outline

- Convex optimization
- Some (simple) examples
- Parser/solvers for convex optimization
- Real-time embedded convex optimization

Optimization

- form mathematical model of real (design, analysis, synthesis, estimation, control, . . .) problem
- use computational algorithm to solve
- standard formulation:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

- x is the (decision) variable; f is the objective; \mathcal{C} is the constraint set
- other formulations: multi-criterion/multi-level optimization, MDO, SAT problems, trade-off analysis, minimax, . . .

The good news

• everything¹ is an optimization problem

¹*i.e.*, much of engineering design and analysis, data analysis

The bad news

- you can't (really) solve most optimization problems
- even simple looking problems are often intractable

Except for some special cases

- least-squares and variations (*e.g.*, optimal control, filtering)
- linear and quadratic programming
- convex optimization

well, OK, there are some other special cases

Convex optimization problem

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & x \in \mathcal{C} \end{array}$

• *C* is convex (closed under averaging):

$$x, y \in \mathcal{C}, \ \theta \in [0, 1] \implies \theta x + (1 - \theta)y \in C$$

$$\theta \in [0,1] \implies f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$$

• not always easy to recognize/validate convexity

Convex optimization

- (no analytical solutions, but) can solve convex optimization problems **extremely well** (in theory and practice)
 - get global solutions, with optimality certificate
 - problems with 10^3 - 10^5 variables, constraints solved by generic methods on generic processor
 - (much) larger problems solved by iterative methods and/or on multiple processors
 - differentiability plays a minor role
- beautiful (and fairly complete) theory

Applications of convex optimization

- convex problems come up much more often than was once thought
- many applications recently discovered in
 - control
 - combinatorial optimization
 - signal processing
 - image processing
 - communications, networking
 - analog and digital circuit design
 - statistics, machine learning
 - finance

Some recent (general) developments

- **robust optimization methods** that handle parameter variation, optimizing average or worst-case performance, quantiles, . . .
- ℓ_1 -based heuristics for finding sparse solutions (compressed sensing, feature selection, . . .)
- parser/solvers make rapid prototyping easy
- code generators yield solvers that can be embedded in real-time systems

Outline

- Convex optimization
- Some (simple) examples
- Parser/solvers for convex optimization
- Real-time embedded convex optimization

Multi-period processor speed scheduling

• processor adjusts its speed $s_t \in [s^{\min}, s^{\max}]$ in each of T time periods

- energy consumed in period t is $\phi(s_t)$; total energy is $E = \sum_{t=1}^{T} \phi(s_t)$
- n jobs
 - job *i* available at $t = A_i$; must finish by deadline $t = D_i$
 - job *i* requires total work $W_i \ge 0$

• $S_{ti} \ge 0$ is effective processor speed allocated to job *i* in period *t*

$$s_t = \sum_{i=1}^n S_{ti}, \qquad \sum_{t=A_i}^{D_i} S_{ti} \ge W_i$$

Minimum energy processor speed scheduling

• choose speeds s_t and allocations S_{ti} to minimize total energy E

$$\begin{array}{ll} \text{minimize} & E = \sum_{t=1}^{T} \phi(s_t) \\ \text{subject to} & s^{\min} \leq s_t \leq s^{\max}, \quad t = 1, \dots, T \\ & s_t = \sum_{i=1}^{n} S_{ti}, \quad t = 1, \dots, T \\ & \sum_{t=A_i}^{D_i} S_{ti} \geq W_i, \quad i = 1, \dots, n \end{array}$$

- a convex problem when ϕ is convex
- more sophisticated versions include
 - multiple processors
 - other constraints (thermal, speed slew rate, ...)
 - stochastic models for (future) data

Example

- T = 16 periods, n = 12 jobs
- $s^{\min} = 1$, $s^{\max} = 6$, $\phi(s_t) = s_t^2$
- jobs shown as bars over $[A_i, D_i]$ with area $\propto W_i$

Stanford Computer Forum, 4/15/09

Optimal and uniform schedules

• uniform schedule: $S_{ti} = W_i/(D_i - A_i)$; gives $E^{\text{unif}} = 374.1$

• optimal schedule S_{ti}^{\star} gives $E^{\star} = 167.1$

Minimum time control with active vibration supression

• force F(t) moves object modeled as 3 masses (2 vibration modes)

• tension T(t) used for active vibration supression

• goal: move object to commanded position as quickly as possible, with

 $|F(t)| \le 1, \qquad |T(t)| \le 0.1$

Ignoring vibration modes

- treat object as single mass; apply only F
- analytical ('bang-bang') solution

Stanford Computer Forum, 4/15/09

With vibration modes

- no analytical solution, but reduces to a quasiconvex problem
- can be solved by solving a small number of convex problems

Stanford Computer Forum, 4/15/09

Network utility maximization

- network with m links and n flows
- flow j has (nonnegative) flow rate f_j
- each flow passes over a fixed set of links (its route)
- total link traffic (sum of flows through it) cannot exceed capacity c_i
- choose flow rates to maximize utility $U(f) = \sum_{i=1}^{n} U_j(f_j)$
- U_j increasing and concave, e.g.,
 - $U_j(f_j) = \log f_j$ (log utility) - $U_j(f_j) = w_j \min\{f_j, s_j\}$ (linear with satiation)

Network utility maximization

• can express link capacity constraints as $Rf \leq c$, with

$$R_{ij} = \begin{cases} 1 & \text{flow } j \text{ passes through link } i \\ 0 & \text{otherwise} \end{cases}$$

• NUM problem is

 $\begin{array}{ll} \mbox{maximize} & U(f) \\ \mbox{subject to} & Rf \leq c, \quad f \geq 0 \end{array}$

a convex optimization problem

• 'solved' (approximately) by distributed protocols

Example

•
$$U_j(f_j) = \min\{f_j, s_j\}; c = (2, 4, 4, 2), s = (2, 1, 2, 3)$$

• greedy flows: optimize over f_1 , then f_2 , ...

Grasp force optimization

- choose K grasping forces on object
 - resist external wrench
 - respect friction cone constraints
 - minimize maximum grasp force
- convex problem (second-order cone program):

minimize $\max_i ||f^{(i)}||_2$ max contact forcesubject to $\sum_i Q^{(i)} f^{(i)} = f^{\text{ext}}$ force equillibrium $\sum_i p^{(i)} \times (Q^{(i)} f^{(i)}) = \tau^{\text{ext}}$ torque equillibrium $\mu_i f_3^{(i)} \ge \left(f_1^{(i)2} + f_2^{(i)2}\right)^{1/2}$ friction cone contraints

variables $f^{(i)} \in \mathbf{R}^3$, $i = 1, \ldots, K$ (contact forces)

Stanford Computer Forum, 4/15/09

Outline

- Convex optimization
- Some (simple) examples
- Parser/solvers for convex optimization
- Real-time embedded convex optimization

Parser/solvers for convex optimization

- specify convex problem in natural form
 - declare optimization variables
 - form convex objective and constraints using a specific set of atoms and calculus rules
- problem is convex-by-construction
- easy to parse, automatically transform to standard form, solve, and transform back
- implemented using object-oriented methods and/or compiler-compilers
- huge gain in productivity (rapid prototyping, teaching, research ideas)

Example (cvx)

convex problem, with variable $x \in \mathbf{R}^n$:

minimize $||Ax - b||_2 + \lambda ||x||_1$ subject to $Fx \le g$

cvx specification:

```
cvx_begin
  variable x(n)  % declare vector variable
  minimize (norm(A*x-b,2) + lambda*norm(x,1))
  subject to F*x <= g
cvx_end
```

Stanford Computer Forum, 4/15/09

when cvx processes this specification, it

- verifies convexity of problem
- generates equivalent IPM-compatible problem
- solves it using SDPT3 or SeDuMi
- transforms solution back to original problem

the cvx code is easy to read, understand, modify

The same example, transformed by 'hand'

transform problem to SOCP, call SeDuMi, reconstruct solution:

```
% Set up big matrices.
[m,n] = size(A); [p,n] = size(F);
AA = [speye(n), -speye(n), speye(n), sparse(n,p+m+1); ...
F, sparse(p,2*n), speye(p), sparse(p,m+1); ...
A, sparse(m,2*n+p), speye(m), sparse(m,1)];
bb = [zeros(n,1); g; b];
cc = [zeros(n,1); gamma*ones(2*n,1); zeros(m+p,1); 1];
K.f = m; K.l = 2*n+p; K.q = m + 1; % specify cone
xx = sedumi(AA, bb, cc, K); % solve SOCP
x = x(1:n); % extract solution
```

Outline

- Convex optimization
- Some (simple) examples
- Parser/solvers for convex optimization
- Real-time embedded convex optimization

Real-time embedded optimization

- embed solvers in real-time applications (signal processing, control, . . .) *i.e.*, **solve an optimization problem at each time step**
- requires solvers that are fast, with known maximum execution time
- used now for applications with hour/minute time-scales (process control, supply chain and revenue 'management', trading . . .)
- new methods allows millisecond/microsecond time-scales

Solving specific problems

in developing a custom solver for a specific application, we can

- exploit structure very efficiently
- determine ordering, memory allocation beforehand
- cut corners in algorithm, *e.g.*, terminate early
- use warm start

to get very fast solver

Code generation

- describe optimization problem (family) in high level form
- automatically generate solver source code
- can do much at code generation time
- yields super fast solvers suitable for real-time embedded applications

Example: cvxmod **specification**

quadratic program, with variable $x \in \mathbf{R}^n$:

 $\begin{array}{ll} \mbox{minimize} & x^T P x + q^T x \\ \mbox{subject to} & G x \leq h, \quad A x = b \end{array}$

cvxmod specification:

Example: cvxmod code generation

• generate solver for problem family qpfam with

```
qpfam.codegen()
```

- output includes qpfam/solver.c and ancillary files
- solve instance with

```
status = solve(params, vars, work);
```

Sample solve times

problem family	vars	constrs	SDPT3 (ms)	cvxmod (ms)
control1	140	190	250	0.4
control2	360	1080	1400	2.0
control3	1110	3180	3400	13.2
order_exec	20	41	490	0.05
net_utility	50	150	130	0.23
actuator	50	106	300	0.17
grasp	30	66	300	0.05

Conclusions

- convex optimization problems come up in many application areas
- new tools make rapid prototyping easy
- new code generation methods yield solvers that can be embedded in real-time applications